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Abstract

In the work, we rebuild the masks of well-known interpolatory symmetric subdivision schemes-binary 2n-point inter-
polatory schemes, the ternary 4-point interpolatory scheme using only the symmetry and the necessary condition for
smoothness and the butterfly scheme, and the modified butterfly scheme using the factorization property.
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1. Introduction

Subdivision schemes are a very efficient tool for the fast construction of smooth curves and surfaces from a
set of control points through iterative refinements. In recent years, subdivision schemes became one of the
most popular methods of creating curves and surfaces in computer aided geometric design (CAGD) and in
the animation industry. Now, they have become a subject of study in their own right with a variety of appli-
cation to computer graphics, geometric modeling and wavelets. Furthermore, schemes have been applied to
solve problems in fluid flow. Their popularity is due to the facts that subdivision algorithms are simple to
apprehend, suitable for computer applications, easy to implement. Also, the subject of subdivision schemes
has an interdisciplinary relation to wavelet, which has brought on reciprocal improvement in both the areas.

Each subdivision scheme is associated with a mask a ¼ faa 2 R : a 2 Zsg, where s = 1 in the curve case and
s = 2 in the surface case. The (stationary) subdivision scheme is a process which recursively defines a sequence
of control points f k ¼ ff k

a : a 2 Zsg by a rule of the form with a mask a ¼ faigi2Zs
0096-3
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* Co
E-m
f kþ1
a ¼

X
b2Zs

aa�Mbf k
b ; k 2 f0; 1; 2; . . .g;
which is denoted formally by f k+1 = Sf k. Then a point of f k+1 is defined by a finite affine combination of
points in fk. Here M is an s · s integer matrix such that limn!1M�n = 0. The matrix M is called a dilation
003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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matrix. Binary (or dyadic) and ternary subdivision schemes are schemes with the matrices M = 2I and M = 3I,
respectively, for the s · s identity matrix I.

Among subdivision schemes, an interpolatory subdivision is more intuitive because it preserves the data
obtained at the former stage and refines new data by inserting values corresponding to intermediate points.
The inserted values are determined by linear combinations of values at the neighboring points.

An interpolatory symmetric binary scheme is one of the most popular subdivision schemes in their appli-
cations. This results in its simplicity to use and the tendency that customers feel comfortable for symmetric
objects. Despite its simplicity, an interpolatory binary subdivision scheme has the drawback that in order
to create smoother curves or surfaces, it is necessary to enlarge the support of the mask. It is well-known,
in general, that the creation of highly smooth curves or surfaces in a subdivision scheme and the shortness
of the support size of its mask are two mutually conflicting requirements, in spite that designers in CAGD
require subdivision schemes to have their masks with a possibly smaller support and to create good smooth
curves or surfaces. For example, it was proved in [8] that there is no C2 interpolatory binary subdivision
scheme with a mask supported on [�3,3]s.

There are two approaches to achieve a desired mask: one is to enlarge the size of the support so that we may
allow free parameters in the mask; the other is to fix the size and find specific values of the mask. There is no
unique method of obtaining a mask. Deslauriers and Dubuc [2] obtained the mask of 2n-point interpolatory
subdivision rule by polynomial reproducing property. Dyn [3] commented that we can get the mask of 4-point
and 6-point schemes with a one parameter by taking a convex combination of the two Deslauriers and Dubuc
schemes. In the work, we try to find smoother possible masks with the size fixed by applying repeatedly
some smoothness conditions. Then, we rebuild the masks of interpolatory symmetric subdivision schemes-
binary 2n-point interpolatory schemes, ternary 4-point interpolatory scheme-in Sections 3 and 4. In Section
5, we study the butterfly scheme and we observe that in its stencil, the sums of even masks and odd masks
along every vertical or horizontal line are the same, which induces a factorization of the corresponding
Laurent polynomial (see Theorem 5). By applying the observation, we show that from the same structure
of the stencil used in the butterfly scheme, we can obtain the mask of the scheme and the modified butterfly
schemes, as well.
2. Preliminaries

Throughout the work, we consider schemes with a mask of finite support. That is, the set fi 2 Zs : ai 6¼ 0g is
finite. This property is useful in the practical implementation because changes in a control point affect only its
local neighborhood.

In this section, we consider a subdivision scheme S with a mask a and a dilation matrix M.
We denote by /0 the tensor product of the symmetric hat function in Rs defined by
/0ðxÞ :¼
Ys

j¼1

B1ðxjÞ for ðx1; . . . ; xsÞ 2 Rs; ð1Þ
where B1 is the B-spline of degree 1 (order 2) given as
B1ðxÞ ¼
1þ x; for x 2 ½�1; 0Þ;
1� x; for x 2 ½0; 1�;
0; for x 2 R n ½�1; 1�:

8><
>:
The subdivision operator S associated with a mask a and a dilation matrix M is the linear operator on the
space ‘ðZsÞ of all sequences on Zs defined by
SvðaÞ :¼
X
b2Zs

aa�MbvðbÞ; v 2 ‘ðZsÞ:
Definition 1. A subdivision scheme S with a mask a and a dilation matrix M converges uniformly if for every
sequence f 0 ¼ ðf 0

a Þa2Zs with compact support, there exists a function f 2 CðRsÞ such that



K.P. Ko et al. / Applied Mathematics and Computation 187 (2007) 609–621 611
lim
n!1

X
a2Zs

Snf 0
a /0ðMn � �aÞ � f

�����
�����
1

¼ 0;
where /0 is the unit hat function given in (1). And for some sequence, the above function f is not identically
zero. The function f is denoted by S1f 0. A uniformly subdivision scheme is said to be Cm if for any initial data
the limit function has continuous derivatives up to order m.

Let E be a complete set of representatives of the distinct cosets of Zs=MZs. Then Zs is the disjoint union of
cþMZs, c 2 E. Also, it is not difficult to see that the set fM�na : a 2 Zs, n 2 Ng is dense in Rs.

Theorem 1. Let S be a subdivision scheme with a mask a and a dilation matrix M. If S converges uniformly, then

for every c 2 E, we have
X
a2Zs

ac�Ma ¼ 1: ð2Þ
Proof. Let f0 be an initial data such that S1f 0 5 0, and let c 2 E be arbitrarily fixed. From (1) and Definition
1, we can see that
lim
n!1

sup
a2Zs
jSnf 0ðaÞ � f ðM�naÞj ¼ 0:
By the continuity of f, there are a 2 Zs and m 2 N such that f(M�ma) 5 0. For n P max(m,N), we have that
Snf 0ðMn�maþ cÞ ¼
X
b2Zs

aMn�maþc�MbSn�1f 0ðbÞ ¼
X
b2Zs

aMbþcS
n�1f 0ðMn�m�1a� bÞ:
With the equation above, we induce that
f ðM�maþM�ncÞ �
X
b2Zs

aMbþcf ðM�ma�M�nþ1bÞ

¼ f ðM�maþM�ncÞ � Snf 0ðMn�maþ cÞ þ
X
b2Zs

aMbþcðSn�1f 0ðMn�m�1a� bÞ � f ðM�ma�M�nþ1bÞÞ:
On the other hand, since the support of the mask a is finite, we can exchange the limit and the summation as
we take n!1. Hence, by the uniform convergence of S and the continuity of f, we obtain that
f ðM�maÞ ¼
X
b2Zs

acþMbf ðM�maÞ:
Since f(M�ma) 5 0, we have, as a consequence, that
X
b2Zs

acþMb ¼ 1; c 2 E: �
For the case when M is two times the s · s identity matrix, Theorem 1 was proved by Cavaretta et al. [1],
and Dyn [5]. Han and Jia [9] showed that the condition in (2) with

P
a2Zs aa ¼ j detðMÞj is necessary for the

subdivision scheme to converge in the Lp-norm.
3. Binary 2n-point interpolatory symmetric subdivision scheme

A binary univariate subdivision scheme is defined in terms of a mask consisting of a sequence of coefficients
a ¼ fai : i 2 Zg, that is, a univariate scheme with a dilation matrix M = 2. The scheme is given by
f kþ1
i ¼

X
j2Z

ai�2jf k
j ; i 2 Z:
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For each scheme S with a mask a, we define the symbol
aðzÞ ¼
X
a2Z

aaza:
The corresponding symbols, called Laurent polynomials, play a efficient role in analyzing the smoothness of a
subdivision scheme.

Interpolatory subdivision schemes retain the points of stage k as a subset of the points of stage k + 1. Thus,
the general form of an interpolatory subdivision scheme is
f kþ1
2i ¼ f k

i ;

f kþ1
2iþ1 ¼

X
j2Z

a1þ2jf k
i�j:
From Theorem 1, we can see that
X
j

a2j ¼
X

j

a2jþ1 ¼ 1 ð3Þ
and the Laurent polynomial of a convergent subdivision scheme satisfies
að�1Þ ¼ 0 and að1Þ ¼ 2: ð4Þ

This condition guarantees the existence of a related subdivision scheme for the divided differences of the ori-
ginal control points and the existence of associated Laurent polynomial a1(z) which can be defined as follows:
a1ðzÞ ¼
2z
ð1þ zÞ aðzÞ: ð5Þ
The subdivision S1 with symbol a1(z) is related to S with a(z) by the following theorem.

Theorem 2 [5]. Let S denote a subdivision scheme with symbol a(z) satisfying (3). Then there exist a subdivision

scheme S1 with the property
df k ¼ S1 df k�1;
where f k = Skf 0 and df k ¼ fðdf kÞi ¼ 2kðf k
iþ1 � f k

i Þ : i 2 Zg. Furthermore, S is a uniformly convergent subdivision
scheme if and only if 1

2
S1 converges uniformly to the zero function for all initial data f 0 in the sense that
lim
k!1

1

2
S1

� �k

f 0 ¼ 0: ð6Þ
A scheme S1 satisfying (6) for all initial data f0 is said to be contractive. By Theorem 2, the check of the
convergence of S is equivalent to checking whether S1 is contractive, which is equivalent to checking whether
there exists an integer L > 0 such that the operator of L iterations of S1 satisfies k 1

2
S1

� �Lk1 < 1.

Here, how to compute the norm of kSLk1? From the refinement rule of S (two refinement rules)
f kþ1
i ¼

X
j

ai�2jf k
j ;
we have
kf kþ1
i k 6

X
j

jai�2jj
 !

max
j
kf k

j k
and we can calculate the norm of S:
kSk1 ¼ max
X

j

ja2jj;
X

j

ja1þ2jj
( )

:

We define generating function of control point f k as
F kðzÞ ¼
X

i

f k
i zi:
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Since the coefficient of zi in Fk+1(z) is f kþ1
i and the coefficient of zi in a(z)Fk(z2) is

P
jai�2jf k

j , we have
F kþ1ðzÞ ¼ aðzÞF kðz2Þ:

Let a½L�ðzÞ ¼

QL�1
j¼0 aðz2jÞ ¼

P
ia
½L�
i zi, F kþLðzÞ ¼

P
if

kþL
i zi and well-known fact F kþLðzÞ ¼ a½L�ðzÞF kðz2LÞ, we have

the 2L refinement rules
f kþL
i ¼

X
j

a½L�
i�2Lj

f k
j

and norm of SL:
kSLk1 ¼ max
X

j

ja½L�
i�2Lj
j; i ¼ 0; 1; . . . ; 2L � 1

( )
:

Theorem 3 [5]. Let aðzÞ ¼ ð1þzÞm
2m bðzÞ. If the subdivision Sb corresponding to b(z) is convergent, then

S1a f 0 2 CmðRÞ for any initial data f 0.

Therefore, we get the fact that a(�1) = 0 is the necessary condition for the convergence of a subdivision
scheme and am(�1) = 0 (where we define amðzÞ ¼ 2z

1þz aðzÞ; a0ðzÞ ¼ aðzÞÞ is the necessary condition for Cm-
smoothness. Now, we try to find the masks of binary interpolatory symmetric subdivision schemes using only
the smoothness conditions.
3.1. 4-point interpolatory subdivision scheme

The insertion rule of a 4-point interpolatory symmetric subdivision scheme is
f kþ1
2i ¼ f k

i ;

f kþ1
2iþ1 ¼ a3f k

i�1 þ a1f k
i þ a�1f k

iþ1 þ a�3f k
iþ2:
The Laurent polynomial of this scheme is given as
aðzÞ ¼ a�3z�3 þ a�1z�1 þ 1þ a1zþ a3z3:
Here, a�1 = a1 and a�3 = a3 by the symmetric subdivision scheme condition. And in order for the scheme to be
C0ðRÞ, we have necessarily a(�1) = 0, that is, a1 þ a3 ¼ 1

2
.

In this case, we obtain the Laurent polynomial of 1
2
S1 as
1

2
a1ðzÞ ¼

z
1þ z

aðzÞ ¼ a3z�2 � a3z�1 þ 1

2
þ 1

2
z� a3z2 þ a3z3:
Applying the necessary condition for C1ðRÞ, we have a1(�1) = 0. Set a3 = �w, we find the mask of the Dyn 4-
point interpolatory subdivision scheme:
�w;
1

2
þ w;

1

2
þ w;�w

� �
:

Dyn [5] found a range of the parameter w for smoothness that this scheme generates C1-functions for
0 < w < 1/8.

3.2. 6-point interpolatory subdivision scheme

The general form of 6-point interploatory subdivision scheme is given by
f kþ1
2i ¼ f k

i ;

f kþ1
2iþ1 ¼ a5f k

i�2 þ a3f k
i�1 þ a1f k

i þ a�1f k
iþ1 þ a�3f k

iþ2 þ a�5f k
iþ3:
The corresponding Laurent polynomial of this scheme is
aðzÞ ¼ a�5z�5 þ a�3z�3 þ a�1z�1 þ 1þ a1zþ a3z3 þ a5z5:
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The symmetric condition induces that a�1 = a1, a�3 = a3, a�5 = a5, and the Laurent polynomial can be written
by
aðzÞ ¼ a5z�5 þ a3z�3 þ a1z�1 þ 1þ a1zþ a3z3 þ a5z5:
In order for the scheme to converge uniformly, we need the condition a(�1) = 0, which induces the relation
a1 þ a3 þ a5 ¼ 1

2
. The Laurent polynomial of 1

2
S1 is
1

2
a1ðzÞ ¼

zaðzÞ
1þ z

¼ a5z�4 � a5z�3 þ ða5 þ a3Þz�2 � ða5 þ a3Þz�1 þ 1

2
þ 1

2
z� ða3 þ a5Þz2 þ ða3 þ a5Þz3 � a5z4 þ a5z5:
To generate C1-functions, the Laurent polynomial must satisfy a1(�1) = 0. It is easily to see that this is always
true in this case. And the Laurent polynomial of 1

2
S2 becomes
1

2
a2ðzÞ ¼

za1ðzÞ
1þ z

¼ 2 a5z�3 � 2a5z�2 þ ð3a5 þ a3Þz�1 � ð4a5 þ 2a3Þ þ
1

2
þ 4a5 þ 2a3

� �
z

	

�ð4a5 þ 2a3Þz2 þ ð3a5 þ a3Þz3 � 2a5z4 þ a5z5



:

The necessary condition for C2-smoothness implies a2(�1) = 0, i.e., 24a5 þ 8a3 þ 1
2
¼ 0. Set a5 = w, then

a3 ¼ � 1
16
� 3w, a1 ¼ 9

16
þ 2w, and we have found the mask of 6-point interpolatory subdivision scheme:
f kþ1
2i ¼ f k

i ;

f kþ1
2iþ1 ¼ wðf k

i�2 þ f k
iþ3Þ �

1

16
þ 3w

� �
ðf k

i�1 þ f k
iþ2Þ þ

9

16
þ 2w

� �
f k

i þ f k
iþ1

� �
:

We can easily obtain the mask of 4-point, 6-point, 8-point and 10-point interpolatory symmetric subdivision
schemes (ISSS) by using the same process:

• 4-point scheme: ½a1; a3� ¼ w2 þ 1
2
;�w2

� �
.

• 6-point scheme: ½a1; a3; a5� ¼ 2w3 þ 9
16
;�3w3 � 1

16
;w3

� �
.

• 8-point scheme: ½a1; . . . ; a7� ¼ 5w4 þ 75
128
;�9w4 þ 25

256
; 5w4 � 3

256
� w4

� �
.

• 10-point scheme: ½a1; . . . ; a9� ¼ 14w5 þ 1225
2048

;�28w5 � 245
2048

; 20w5 þ 49
2048

;�7w5 � 5
2048

;w5

� �
.

From these masks, Ko et al. [11] found out a general formula for the mask of (2n + 4)-point ISSS with two
parameters which reproduces all polynomials of degree 6 2n + 1 and some relations between the mask of the
(2n + 4)-point ISSS and the (2n + 2)-point Deslauriers and Dubuc schemes.

4. Ternary interpolatory symmetric subdivision scheme

A ternary subdivision scheme is a univariate one with a dilation matrix M = 3. The scheme is given by
f kþ1
i ¼

X
j2Z

ai�3jf k
j ; i 2 Z: ð7Þ
And the general rule of a ternary interpolatory subdivision scheme is
f kþ1
3i ¼ f k

i ;

f kþ1
3iþ1 ¼

X
j2Z

a1þ3jf k
i�j;

f kþ1
3iþ2 ¼

X
j2Z

a2þ3jf k
i�j:
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Theorem 1 shows that the mask faigi2Z of a convergent ternary subdivision scheme S satisfies
X
j

a3j ¼
X

j

a3jþ1 ¼
X

j

a3jþ2 ¼ 1: ð8Þ
The Laurent polynomial of a convergent subdivision scheme satisfies
aðe2ip=3Þ ¼ aðe4ip=3Þ ¼ 0 and að1Þ ¼ 3
and there exists the Laurent polynomial a1(z) such that
a1ðzÞ ¼
3z2

ð1þ zþ z2Þ aðzÞ:
The subdivision S1 with symbol a1(z) is related to S with symbol a(z) by the following theorem.

Theorem 4 [10]. Let S denote a subdivision scheme with symbol a(z) satisfying (8). Then there exists a subdivision

scheme S1 with the property
df k ¼ S1 df k�1;
where fk = Skf 0 and df k ¼ fðdf kÞi ¼ 3kðf k
iþ1 � f k

i Þ : i 2 Zg. And S is a uniformly convergent subdivision scheme if

and only if 1
3
S1 converges uniformly to the zero function for all initial data f0
lim
k�>1

1

3
S1

� �k

f 0 ¼ 0:
Furthermore, S generates Cm-limit functions provided that the subdivision scheme S1 generates Cm�1-limit func-

tions for some integer m P 1.
4.1. Ternary 4-point interpolatory subdivision scheme

We present a ternary 4-point interplatory subdivision scheme with three subdivision rules:
f kþ1
3i ¼ f k

i ;

f kþ1
3iþ1 ¼ a4f k

i�1 þ a1f k
i þ a�2f k

iþ1 þ a�5f k
iþ2;

f kþ1
3iþ2 ¼ a5f k

i�1 þ a2f k
i þ a�1f k

iþ1 þ a�4f k
iþ2:
The Laurent polynomial of this scheme is
aðzÞ ¼ a�5z�5 þ a�4z�4 þ a�2z�2 þ a�1z�1 þ 1þ a1zþ a2z2 þ a4z4 þ a5z5:
With the symmetry condition, a(z) can be written by
aðzÞ ¼ a5z�5 þ a4z�4 þ a2z�2 þ a1z�1 þ 1þ a1zþ a2z2 þ a4z4 þ a5z5:
To generate C0-functions, we require that a(1) = 3. And it implies a1 + a2 + a4 + a5 = 1. The Laurent polyno-
mial of 1

3
S1 is
1

3
a1ðzÞ ¼

z2aðzÞ
1þ zþ z2

¼ a5z�3 þ ða4 � a5Þz�2 � a4z�1 þ ða5 þ a2Þ þ ð1� 2a5 � 2a2Þz

þ ða2 þ a5Þz2 � a4z3 þ ða4 � a5Þz4 þ a5z5:
From the necessary condition for C1-smoothness, the mask corresponding to a1(z) satisfies the relation as in
(8), i.e., 3a2 � 3a4 + 6a5 = 1. And the Laurent polynomial of 1

3
S2 is
1

3
a2ðzÞ ¼

z2a1ðzÞ
1þ zþ z2

¼ 3a5z�1 þ 3ða4 � 2a5Þ þ 3ða5 � 2a4Þzþ 3
1

3
þ 2a4

� �
z2

þ 3ða5 � 2a4Þz3 þ 3ða4 � 2a5Þz4 þ 3a5z5:
To generate C2-functions, we require the mask of S2 to satisfy the condition (8), i.e., a4 þ a5 ¼ � 1
9
. Set

a5 ¼ � 1
18
þ 1

6
l, we can find the mask of ternary 4-point interpolatory subdivision scheme:
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f kþ1
3i ¼ f k

i ;

f kþ1
3iþ1 ¼ �

1

18
þ 1

6
l

� �
f k

i�1 þ
13

18
þ 1

2
l

� �
f k

i þ
7

18
� 1

2
l

� �
f k

iþ1 �
1

18
� 1

6
l

� �
f k

iþ2;

f kþ1
3iþ2 ¼ �

1

18
� 1

6
l

� �
f k

i�1 þ
7

18
� 1

2
l

� �
f k

i þ
13

18
þ 1

2
l

� �
f k

iþ1 �
1

18
þ 1

6
l

� �
f k

iþ2:
Hassan et al. [10] showed that the scheme is C2 for 1
15
< l < 1

9
.

5. Bivariate schemes on regular meshes

In this section, we consider cases when s = 2 and M is two times the 2 · 2 identity matrix. In this case, we
may assume that the complete set E of representatives of the distinct cosets of Z2=2Z2 consists of the vectors
(0,0), (1,0), (0, 1), and (1,1).

For a quad-mesh, consider the refinement rule for a set of point fi 2 R3, i 2 Z2
f kþ1
i ¼

X
j2Z2

ai�2jf k
j ; i 2 Z2: ð9Þ
In the bivariate case, there are 4 rules (even–even, even–odd, odd–even and odd-odd) depending on the parity
of each component of the vector i 2 Z2.
f kþ1
ð2i1;2i2Þ ¼

X
j1;j2

að2j1;2j2Þf
k
ði1�j1;i2�j2Þ;

f kþ1
ð1þ2i1;2i2Þ ¼

X
j1;j2

að1þ2j1;2j2Þf
k
ði1�j1;i2�j2Þ;

f kþ1
ð2i1;1þ2i2Þ ¼

X
j1;j2

að2j1;1þ2j2Þf
k
ði1�j1;i2�j2Þ;

f kþ1
ð1þ2i1;1þ2i2Þ ¼

X
j1;j2

að1þ2j1;1þ2j2Þf
k
ði1�j1;i2�j2Þ:
The easiest way to extend univariate to bivariate schemes is to consider tensor-product schemes. For example,
using the mask of Chaikin’s scheme, we can get the mask of the bivariate biquadratic scheme
að2i;2jÞ :
1

16

9 3

3 1

� �
; að2iþ1;2jÞ :

1

16

3 9

1 3

� �
;

að2i;2jþ1Þ :
1

16

3 1

9 3

� �
; að2iþ1;2jþ1Þ :

1

16

1 3

3 9

� �
:

We can also obtain this mask set by convolution of single quadratic B-spline mask 1
4

1 3 3 1½ �.

1

4
3 1½ � � 1

4
3 1½ �; 1

4
3 1½ � � 1

4
1 3½ �;

1

4
1 3½ � � 1

4
3 1½ �; 1

4
1 3½ � � 1

4
1 3½ �:
Doo–Sabin presented an algorithm which generalize the biquadratic B-spline subdivision rule to include arbi-
trary topology. Similarly, we can get the mask of bi-cubic refinement rule through the tensor product of single
cubic B-spline mask 1

8
1 4 6 4 1½ �.
að2i;2jÞ :
1

64

1 6 1

6 36 6

1 6 1

2
64

3
75; að2iþ1;2jÞ :

1

64

4 4

24 24

4 4

2
64

3
75;

að2i;2jþ1Þ :
1

64

4 24 4

4 24 4

� �
; að2iþ1;2jþ1Þ :

1

64

16 16

16 16

� �
:
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Let us consider the topology of a regular triangulation. We regard the subdivision scheme as operating on the
three-directional grid, since the three-directional grid can be regarded also as Z2.

Let aðzÞ ¼ aðz1; z2Þ ¼
P

i;jaijzi
1zj

2 be the symbol of a bivariate subdivision scheme S which is defined on reg-
ular triangulations.

From Theorem 1 the mask of a bivariate convergent subdivision scheme S satisfies
X
b2Z2

aa�2b ¼ 1; a 2 fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg: ð10Þ
It follows that the symbol of a bivariate convergent subdivision scheme satisfies:
að�1; 1Þ ¼ að1;�1Þ ¼ að�1;�1Þ ¼ 0 and að1; 1Þ ¼ 4: ð11Þ

In contrast to the univariate case, the necessary condition (10) and the derived condition (11) on a(z) do not
imply a factorization of the corresponding symbol in the bivariate case. However, we have the following:

Theorem 5. Let S be a bivariate subdivision scheme with a compactly supported mask corresponding to its

Laurent polynomial aðz1; z2Þ ¼
P

i;j2Zaijzi
1zj

2. Then we have

(i) for i = 1,2, a(z1, z2) has 1 + zi as a factor if and only if
aðz1; z2Þjzi¼�1 ¼ 0; ð12Þ
(ii) a(z1, z2) has 1 + z1z2 as a factor if and only if
aðz1; t=z1Þjt¼�1 ¼ 0 equivalently or aðz2; t=z2Þjt¼�1 ¼ 0: ð13Þ
Proof. The proof is straightforward and we show only that a(�1,z2) = 0 if and only if a(z1,z2) has z1 + 1 as a
factor. We can expand a(z1,z2) with respect to z2 as
aðz1; z2Þ ¼
X
i2Z

aiðz1Þzi
2

for some polynomials ai in one variable. Then it is easy to see that a(�1,z2) = 0 if and only if for every i 2 Z,
ai(�1) = 0, which implies that a(z1,z2) has z1 + 1 as a factor. The remains are shown in the same argument,
which completes the proof. h

As we can see in the matrix form of the butterfly scheme below, Theorem 5 means in the geometrical point
of view that when we plot the masks aij at the point (i, j) in Z2-plane, the condition a(�1,z2) = 0 if and only if
the sums of even masks and of odd masks along each horizontal line are the same, that is to say, for every
k 2 Z,
X

i2Z
ð�1Þiai;k ¼ 0:
And we can see that a(z1, t/z1)jt=�1 = 0 if and only if
X
i2Z
ð�1Þiai;iþk ¼ 0; k 2 Z:
For integers k and ‘, expanding a(z1,z2) as
aðz1; z2Þ ¼
X
i2Z

biðzk
1z‘2Þzi

1

with polynomials bi in one variable, we have, in general, that a(z1,z2) has 1þ zk
1z‘2 as a factor if and only if the

mask {aij} satisfies
X
i2Z
ð�1Þiaik;i‘þj ¼ 0 for every j 2 Z:
Comparing Theorem 2 in the univariate case, Dyn [4] found the following criterions for the verification of the
convergence and smoothness of a bivariate subdivision scheme.
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Theorem 6 [4]. Let S be a bivariate subdivision scheme with its symbol a(z1, z2) having (1 + z1)(1 + z2)(1 + z1z2)

as a factor. Then, S is convergent if and only if the schemes corresponding to the symbols
a1;0ðz1; z2Þ ¼
aðz1; z2Þ
1þ z1

; a0;1ðz1; z2Þ ¼
aðz1; z2Þ
1þ z2

; a1;1ðz1; z2Þ ¼
aðz1; z2Þ
1þ z1z2

ð14Þ
are contractive. If any two of these schemes are contractive then the third is also contractive.

Theorem 7 [4]. Let S be a bivariate subdivision scheme with its symbol a(z1, z2) having (1 + z1)(1 + z2)(1 + z1z2)
as a factor. Then S generates C1 limit functions if the schemes with the symbols 2a1,0(z1, z2), 2a0,1(z1, z2) and

2a1,1(z1, z2) in (14) are convergent. If any of two of these schemes are convergent then the third is also convergent.

Moreover,
o

oz1

S1f 0 ¼ S1;0D1;0f 0;

o

oz2

S1f 0 ¼ S0;1D0;1f 0;

o

oz1

þ o

oz2

� �
S1f 0 ¼ S1;1D1;1f 0:
To check if a scheme generates smooth limit functions with the aid of Theorems 6 and 7, we have to assume
that the symbol of a subdivision scheme is factorizable:
aðz1; z2Þ ¼ ð1þ z1Þð1þ z2Þð1þ z1z2Þbðz1; z2Þ: ð15Þ

In the following three sections, we study symmetric subdivision schemes with factorizable symbols a(z1,z2) as
in (15). At first, we recall the most popular subdivision scheme in this case, the butterfly scheme, and then we
show that the butterfly scheme and the modified butterfly scheme are rebuilt only using the factorization prop-
erty and their stencil structures. Note that to verify the smoothness of a symmetric subdivision scheme, based
on Theorems 6 and 7, we have only to check the contractivity of one of the two schemes a1,0(z1,z2) and
a0,1(z1,z2) in (14), regarding the symmetry property.

5.1. The Dyn butterfly subdivision scheme

Dyn et al. [6] introduced the butterfly scheme. The butterfly scheme is an extension of the 4-point interpo-
latory subdivision scheme to the bivariate case with topology of regular triangulation, which is an interpola-
tory triangular subdivision scheme with stencil of small support (see Fig. 1).

The mask of the butterfly scheme is symmetric ðai;j ¼ aj;i; i; j 2 ZÞ and given as
a0;0 ¼ 1;

a1;0 ¼ a�1;0 ¼ a�1;�1 ¼ a1;1 ¼ 1=2;

a1;�1 ¼ a�1;�2 ¼ a1;2 ¼ 2w;

a1;�2 ¼ a�3;�2 ¼ a�1;2 ¼ a3;2 ¼ a�1;�3 ¼ a1;3 ¼ �w
3 5

4

12

8

6

7

Fig. 1. Stencil of the Dyn butterfly scheme: 1; 2 ¼ 1
2

� �
, (3,4 = 2w), (5,6,7,8 = �w).



(a) Odd-Even masks (b) Even-Odd masks (c) Odd-Odd masks

Fig. 2. The mask maps of the butterfly scheme.
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and zero otherwise. There are three kinds of refinement rules as in (9):
f kþ1
2iþ1;2j ¼

1

2
f k

i;j þ f k
iþ1;j


 �
þ 2w f k

i;j�1 þ f k
iþ1;jþ1


 �
� w f k

i�1;j�1 þ f k
iþ1;j�1 þ f k

i;jþ1 þ f k
iþ2;jþ1


 �
;

f kþ1
2i;2jþ1 ¼

1

2
f k

i;j þ f k
i;jþ1


 �
þ 2w f k

i�1;j þ f k
iþ1;jþ1


 �
� w f k

i�1;j�1 þ f k
i�1;jþ1 þ f k

iþ1;j þ f k
iþ1;jþ2


 �
;

f kþ1
2iþ1;2jþ1 ¼

1

2
f k

i;j þ f k
iþ1;jþ1


 �
þ 2w f k

iþ1;j þ f k
i;jþ1


 �
� w f k

i;j�1 þ f k
i�1;j þ f k

iþ2;jþ1 þ f k
iþ1;jþ2


 �
:

In Fig. 2, we plot the index of non-zero masks according to the refinement rules as follows. The mask maps in
Fig. 2 suggest why the scheme is called the butterfly subdivision scheme. We express the mask of the butterfly
scheme in the matrix form:
A ¼ ðaijÞ ¼

j 3 2 1 0 �1 �2 �3

i + + + + + + +
�3 ) � � � � �w �w �
�2 ) � � �w � 2w � �w

�1 ) � �w 2w 1
2

1
2

2w �w

0 ) � � 1
2

1 1
2

� �
1 ) �w 2w 1

2
1
2

2w �w �
2 ) �w � 2w � �w � �
3 ) � �w �w � � � �

2
66666666666666664

3
77777777777777775

:

From the matrix, we see that the mask satisfies the conditions that for any k 2 Z,
X
i2Z
ð�1Þiai;k ¼

X
i2Z
ð�1Þiak;i ¼

X
i2Z
ð�1Þiai;iþk ¼ 0
and Theorem 5 implies that the symbol of the butterfly scheme is factorizable. The symbol is written as
aðz1; z2Þ ¼
X3

i¼�3

X3

j¼�3

ai;jzi
1zj

2 ¼
1

2
ð1þ z1Þð1þ z2Þð1þ z1z2Þð1� wcðz1; z2ÞÞðz1z2Þ�1

; ð16Þ
where
cðz1; z2Þ ¼ 2z�2
1 z�1

2 þ 2z�1
1 z�2

2 � 4z�1
1 z�1

2 � 4z�1
1 � 4z�1

2 þ 2z�1
1 z2 þ 2z1z�1

2

þ 12� 4z1 � 4z2 � 4z1z2 þ 2z2
1z2 þ 2z1z2

2:
Gregory [7] computed an explicit shape parameter value w0 > 1/16 such that for 0 < w < w0, the butterfly
scheme generates C1 limit functions on regular triangulations. It is well-known that the scheme reproduces
cubic polynomials for w = 1/16, otherwise linear polynomials for w 5 1/16.

5.2. Symmetric 8-point butterfly subdivision scheme

In this section, we consider an 8-point symmetric interpolatory bivariate subdivision scheme defined on a
regular triangulation mesh.



3 5

4

12

8

6

7

Fig. 3. Stencil of 8-point butterfly scheme: (1,2 = a), (3,4 = b), (5,6,7,8 = c).
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If we set the stencil of the symmetric 8-point scheme such as Fig. 3.
The mask of such a scheme is given in the matrix form as follows:
A ¼ ðaijÞ ¼

j 3 2 1 0 �1 �2 �3

i + + + + + + +
�3 ) � � � � c c �
�2 ) � � c � b � c

�1 ) � c b a a b c

0 ) � � a 1 a � �
1 ) c b a a b c �
2 ) c � b � c � �
3 ) � c c � � � �

2
66666666666666664

3
77777777777777775

:

The bivariate Laurent polynomial of this scheme is assumed to be factorizable:
aðz1; z2Þ ¼
X3

i¼�3

X3

j¼�3

ai;jzi
1zj

2 ¼ ð1þ z1Þð1þ z2Þð1þ z1z2Þbðz1; z2Þ:
By Theorem 5, the factorization implies that for each k 2 Z, we have
X
i2Z
ð�1Þiai;k ¼

X
i2Z
ð�1Þiak;i ¼

X
i2Z
ð�1Þiai;iþk ¼ 0:
In this case, we get 2c + b = �2a + 1 = 0. If we set c = �w, we obtain the same mask of the butterfly scheme:
a ¼ 1

2
; b ¼ 2w; c ¼ �w:
5.3. Symmetric 10-point butterfly subdivision scheme

As shown in the previous section, the butterfly scheme generates C1 surfaces in the topology of regular set-
ting. The smoothness of surface in geometric modeling is required to be up to C2. To obtain a subdivision
3 5

4

12

8

6

7

910

Fig. 4. Stencil of the symmetric 10-point butterfly scheme: (1,2 = a), (3,4 = b), (5,6,7,8 = c), (9,10 = w).
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scheme retaining the simplicity of the butterfly scheme and creating C2 limit surfaces, we need to enlarge the
support of the butterfly scheme, as mentioned in the introduction. We try it by taking two more points into
account to calculate a new control points as shown in Fig. 4.

Comparing the stencil of the butterfly scheme in Fig. 3, we consider two nearby points (points 9 and 10 in
Fig. 4) with different mask value (weight) from those of the other eight points. The mask of 10-point butterfly
scheme can is written in the matrix form:
A :¼

j 3 2 1 0 �1 �2 �3

i + + + + + + +
�3 ) � � � w c c w

�2 ) � � c � b � c

�1 ) � c b a a b c

0 ) w � a 1 a � w

1 ) c b a a b c �
2 ) c � b � c � �
3 ) w c c w � � �

2
66666666666666664

3
77777777777777775

:

We assume a factorization of the Laurent polynomial of this scheme:
aðz1; z2Þ ¼ ð1þ z1Þð1þ z2Þð1þ z1z2Þcðz1; z2Þ:

From the factorization, we get
2cþ b ¼ 0; �2a� 2wþ 1 ¼ 0:
Therefore, we find the mask of 10-point butterfly scheme:
a ¼ 1

2
� w; b ¼ 2c; 5; 6; 7; 8 ¼ �c; 9; 10 ¼ w:
This mask is exact with a modified butterfly scheme when c = 1/16 + w. Zorin et al. [12] examined that the
butterfly scheme exhibits undesirable artifacts in the case of an irregular topology, and derived an improved
scheme (a modified butterfly scheme), which retains the simplicity of the butterfly scheme. The modified but-
terfly scheme is interpolating and results in smoother surfaces.
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